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Autocorrelation and Regularization in Digital Images
II. Simple Image Models
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Abstract—The variogram function used in geostatistical analysis is a
useful statistic in the analysis of remotely sensed images. In Part II of
this paper, using the results derived in Part I, the basic second-order,
or covariance, properties of scenes modeled by simple disks of varying
size and spacing after imaging into disk-shaped pixels are analyzed to
explore the relationship between image variograms and discrete object
scene structure. The models provide insight into the nature of real im-
ages of the earth’s surface and the tools for a complete analysis of the
more complex case of three-dimensional illuminated discrete-object
images.

Keywords—Remote sensing, digital image, spatial statistics, auto-
covariance, regionalized variable, variogram.

1. INTRODUCTION

N MANY applications of remote sensing and digital

image processing, it is reasonable to regard a scene as
a spatial arrangement of two- or three-dimensional objects
superimposed upon a background [1]. Consider a set of
measurements of brightness values obtained from the
scene, each of which is associated with a spatial position
in the scene. In mathematical terms, this image of the
scene can be considered as a ‘‘regionalized variable’’—
brightness as a function of spatial position. In the first
paper of this series [2], we considered the covariance
properties and effects of regularization on scenes modeled
by general regionalized variables. We also introduced a
range of tools allowing us to construct covariance func-
tions for discrete objects. The objective of this paper is to
apply the results of the first paper to some simple models
of scenes and digital images obtained from them, in order
to show how the spatial structure of an image depends on
the underlying spatial structure of the scene. We begin
with an introduction to the regionalized variable and the
variogram.

Consider a spatial random function f (regionalized vari-
able) that generates radiance values f(x) as a function of
spatial position x. (Table I presents a description of the
symbols used in this paper.) Here x is regarded as a vector
variable which, in our case, is a pair of position coordi-
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TABLE 1
NOTATION
Symbol Description
fx) Spatial random function
V(h) Variogram at distance A
Cov(h) Covariance of f(x) at h
a, (V) Serra’s range quantity
RV Parameter space of N dimensions
Z Regularization ¢lement
fz2) Spatial random function rcgularized by Z
Mes(Z) Lebesque mceasure of Z; arca of Z for our
case
Iz Indicator function for Z
Vg (h) Regularized variogram
T Normalized overlap function for Z
Q, Disk model proportion of uncovered arca
g, Disk model set overlapping function for
uncovered area
D Disk model arca covered by disks
K(h) Set overlap function for individual disks
y(h) Disk model variogram
Yz Regularized disk model variogram
o; Far-field variance for disk model
D,, D, Diamecters of basic and rcgularizing disks
Cz Far-ficld regularized disk modcl variance
G(u) Generating function for the point process
P Crown fraction

nates. In geostatistics, the degree of spatial autocovari-
ance associated with a regionalized variable is commonly
analyzed using the properties of the variogram function

(31-17]
v(h) = E{(F(x) = f(x + 1))} (1)

where V (k) is the value of the variogram function at (vec-
tor) distance ki, f(x) is the value of the regionalized vari-
able at (vector) location x, and f(x + h) is the value of
the regionalized variable at location x + k. The variogram
and the spatial covariance are simply related by

V(h) = Cov (0) — Cov (h) (2)
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where Cov is defined in the usual way as the covariance
between values distance / apart. The use of the variogram
in geostatistics has been motivated by the existence of sit-
uations in mining geology where an infinite variance
model is appropriate and by the fact that the local prop-
erties of the variogram (small #) are less affected by trends
and regional patterns than the covariance.

Associated with the variograms of a regionalized vari-
able is a local analysis called ‘‘Structural Analysis’’ [8],
in which the basic properties of the variogram are used to
assess the spatial structure of the regionalized variable.
These are illustrated in Fig. 1. Note that this example is
an isotropic variogram, in which the value of V(h) is de-
pendent only on the magnitude | | of i and not its direc-
tion. It can therefore be displayed as a simple line graph.
In the case in which the variogram is not isotropic, and
therefore depends on both the magnitude and direction of
h, the variogram will have to be displayed as a three-di-
mensional surface through the use of contouring, per-
spective surface display, etc. [9].

There are five especially significant parameters that de-
scribe the variogram. These are:

1) The *‘sill,”” at which the variogram flattens off to a
level equal to the general data variance. The existence and
size of the sill are important parameters. The lack of a sill
could indicate a trend in the data (e.g., a scan-angle
brightness effect across the image) and/or that the domain
of definition of the data is too small for the scales of pat-
tern in the regionalized variable (i.e.. h is never large
enough to get to the sill).

2) The ‘“‘range,”” the value of || at which the vario-
gram reaches the sill. This parameter is often related to
the size or scale of the largest elements (objects) in the
scene that give rise to the correlation structure.

3) The ‘‘nugget effect,”” which, when it occurs, is ex-
pressed as a finite limit for the variogram as | 4| tends to
zero. The variogram is, of course, zero at A = 0. How-
ever, there may be uncorrelated noise in the observations
that will always produce variance. In fact, if the region-
alized variable is a realization of an uncorrelated noise
series then the variogram will have no range and the nug-
get effect will equal the sill.

4) The *‘derivative at the origin,”” which is diagnostic
of the essential variability of the data at the finest scale.
If the limit of the derivative at the origin as | 4| tends to
zero is near zero, then the underlying process will be
‘‘smooth’’—whereas if it is high, then the process will be
“‘rough.”’” In our work this parameter can be interpreted
as the amount of edge and boundary at the finest scale.

5) The ‘‘anisotropy’’ of the variogram, which can ap-
pear if the regionalized variable is defined in more than
one dimension. It reveals a covariance structure such that
values tend to be more similar in one or more preferred
directions than in others. This will commonly arise in a
remotely sensed image when the sun is not overhead and
three-dimensional objects in the scene cast shadows (dark
shapes) that are elongated in one direction [10], [11].

k)

Vih)

(h)
Fig. 1. Example of two variograms, showing sill, range, and nugget.

Cross-variograms can also be defined for multivariate
spatial data—which is of special significance in remote
sensing. In this case the sill is the variance/covariance
matrix for the data, the nugget is the variance/covariance
for the uncorrelated component in the image (usually re-
garded as noise), and the range will be a multivariate con-
cept.

Among the parameters described above, the range is
least well specified in practical terms. In many cases the
model of a variogram has no specific point where it
reaches the sill (such as for example an exponential model)
and the presence of noise and sampling variance means
that some other parameter is needed for estimating the
range of observed variograms. Serra [12] defines a useful
quantity related to the range

a, (V) = SR Cov (h) d|h|/Cov (0) (3)
where R" is an n-dimensional section of R", the full pa-
rameter space for the covariance. In the case of images,
n = 2, and this concept of range is defined as an area in
two dimensions or a set of one-dimensional measures de-
fining range in specific directions. The behavior of a, with
direction is clearly a measure of anisotropy, but for a two-
dimensional isotropic covariance, a, and a, both represent
a similar attribute—the linear range. In this case

Il

2 S: Cov (r) dr/Cov (0) (4)

a

(5)

It is often used to convert g, to a linear measure by defin-

mng
) <a2>l/2
a = | — .
T

For example, for the exponential covariance Cov (r) =
2 —ar -

o°¢e”* we find that @, = 2/« and a} = V2 /a, both of

which provide direct estimates for « in the practical case.

a

27 S: r Cov (r) dr/Cov (0).

(6)
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II. EFFECTS OF REGULARIZATION ON SPATIAL
STATISTICS

A. Regularization and Matheron’s Theorem

In practice, the variogram is computed from integrals
over basic blocks, rather than on point measurements. For
example, in remote sensing, the computed variogram for
an image is based on integration of radiance over a field
of view (pixels) and not the underlying radiance data. The
underlying variogram is said to be ‘‘regularized’’ by this
averaging over the shape of the pixel.

The term ‘‘regularize’’ relates to the situation in which
a point process on the plane is convolved with a spatial
filter supported on an element, or shape, Z. If the points
are regarded as having unit mass, and are thus the two-
dimensional analog of the Dirac or delta function, the
variance or variogram at small /2 will be ill-defined. How-
ever, if the points are convolved with the element Z, the
variable of interest becomes a count of the points within
Z. The new variable is now tractable—i.e., it is a ‘‘reg-
ular’” function.

Suppose we have a regionalized variable f (x) with var-
iogram V(h). Let fz(y) be the regularized function de-
rived from f(x) by convolving it with Z. We can express
this as

fz(y) = m SZ“f(x)d|x|
_ 1
" Mes (Z)

_f* Iz(y)
Mes (Z)

[, 1o+ ) ) al

(7)

where Z, is the regularizing element (such as a disk or a
square) centered at y, Mes (Z) is the measure of the ele-
ment (the area, in the case N = 2), I is the indicator
function (I;(x) = 1 forx € Z, O else), I,(¢) = I,( —1),
and * is convolution. To avoid confusion, we will refer
to the variogram of the underlying function (V(#)) as the
punctual variogram and the variogram of the regularized
function (Vz(h)) as the regularized variogram.

The results presented generally in Part I of this paper
and the convolution form of Matheron’s Theorem [3]-[5]
can be used to relate the punctual variogram to the regu-
larized variogram. In Part I, we showed how the effects
of regularization on the covariance of a regionalized vari-
able could be separated into the effects of the underlying
covariance and the shape of the regularizing element. In
the case where the regularizing process is the convolution
above, the result reduces to the simple form

Ve(h) = (T * V), = (T=V), (8)

where T is the covariance (or overlap) function for the
regularizing element Z, or

T =1,%1;/Mes’ (Z). (9)

249

Spelled out, the variogram of (say) radiance of pixels is
related to the underlying variogram of radiance at points
by a convolution of the underlying variogram with the
covariance function of the pixel. This also means that the
variogram for aggregations of pixels should be derivable
for all aggregation block sizes if the punctual variogram
is known. Note, however, that the usual case will be that
the punctual variogram is not known and must be esti-
mated from a regularized variogram.

B. Local Variance as a Function of Regularization

Consider the average variance between adjacent bright-
ness values in a digital image of a discrete-object scene
[1]—for example, the mean of a ‘‘texture’’ image, in
which each brightness value is replaced by the standard
deviation of brightness values within a three-by-three
window centered around it. That is

i+t 1 1/2
L= {z‘la 22 (g - xi‘j)2:| (10)
k=i—11=j~1

where T;, is the texture measure, and X;; is the mean
within the three-by-three window around i, j. This type
of variance has been referred to as the ‘‘local variance’’
by Woodcock and Strahler [13]. Let us now examine two
cases. In the first, referred to as the H-resolution case [14],
the pixels in the image are much smaller than the objects
in the scene. Here, the local variance will be low, since
many adjacent brightness measurements will have the
same values—i.e., will take on either the brightness value
of the objects or the brightness value of the background.
In contrast is the L-resolution case, in which the pixels
are much larger than the objects. In this situation, there
will be many objects within each pixel, and if the density
of objects is more or less uniform, then each pixel will
tend to have about the same brightness. Thus, the local
variance of such an image will also be low. Between these
limits, however, there will be a peak in image variance
where there is a maximum interaction between the pixel
and object size [13].

In the context of this paper, the local variance is most
properly expressed not as a ‘‘texture’’ value, but as the
regularized value of the variogram at a step size equal to
the regularization size. That is

i+1  j+1 1/2
Vi = {,ls D x,-‘,nlz} - (1)
k=i—-11=j-1
It is reasonable, too, to expect that the maximum or peak
in a graph of local variance against block size will relate
to the overall range of the underlying covariance function.
In fact, in the practical case, the existence and position of
the peak provide a more tractable analysis of the range
than numerical integration of the estimated covariance
function.
This can be seen by considering the case of an expo-
nential model applied to the one-dimensional variogram,
as in Part I of this paper. For this case, the punctual co-
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Fig. 2. Local variance (value of variogram at given block size) plotted as
a function of block size 2a for a one-dimensional exponential model.
Parameters ¢ and « (see text) are taken as unity.

2 —ah

variance C(h) with distance h is modeled as o“¢”
Expression (53) of that paper presents a formula for the
variogram at step h regularized by a segment of length
2a. Substituting 2a for h yields

2

o 2

- —— (1 — e )",
(2aa )2 ( )
From this expression, it can be shown that the peak will
be reached at 2a = 1.8926/«, and will have a value of
0.381102. Fig. 2 shows a graph of this local variance
plotted as a function of block size. Finally, it should be
noted that this analysis is very similar in concept, and in
some cases identical, to the methods based on hierarchical
analysis of variance used to study ecological and geo-
graphic patterns by, among others, Grieg-Smith [15], Hill

[16], and Moellering and Tobler [17].

Vao(2a) = 03, (12)

III. IMAGEs DERIVED FROM Disk MODELS

In the usual geostatistical applications of regionalized
variables, it is common to assume an arbitrary covariance
structure such that the covariance reduces with distance
in (e.g.) a linear, exponential, or spherical fashion. The
first paper in this series [2] provided some examples of
exponential covariance structures, regularized in one and
two dimensions by line segments and disks, respectively.
However, when we consider the case of a discrete-object
model for a remotely sensed scene, it may be possible to
derive an explicit covariance function based on the sizes,
shapes, brightnesses, and densities of objects. Perhaps the
simplest such scene model of this nature is that of over-
lapping disks of constant size and brightness that are ran-
domly placed on a contrasting background. If forests or
shrublands are regarded as land surfaces covered by ob-
jects that have more or less round projections onto the
ground, it is easy to see that this simple model may be
relevant to a real application. Further, the random disk
model is numerically tractable, utilizing simple, isotropic
geometry and well-known theorems from the field of ge-
ometrical probability. And, it is not overly difficult to ex-
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tend the model to populations of disks with varying size
(e.g., lognormal) distributions or to clustered (e.g., Ney-
man Type A) location functions, as we will show in a
subsequent section.

A. The Simple Disk Model

The first model considered is the simple one of disks of
constant radius scattered randomly on the plane (Fig. 3).
The radiances (or ‘‘colors’’) of the disk and background
are taken as 1 and 0, respectively. This is no limitation
as long as it is assumed that overlapping disks have the
same radiance as single disks. If this simple ‘‘scene’’ is
imaged such that the brightness value of a pixel represents
the radiance averaged over an area A of the pixel, then
the data are simply the fraction of each resolution cell
covered by disks. The model results in a random set func-
tion that is clearly stationary and isotropic in the sense
defined in the first paper of this series. The effect of in-
tegration of the scene into image pixels is to regularize
the underlying regionalized variable.

From our work in the first paper, it follows that the
basic set quantities needed to construct the punctual var-
iogram for this scene model are the proportion of the un-
covered area (or the probability Q, that a point x will fall
on the background), which is

, = Prob {x e D} (13)

and the set overlapping function of the uncovered area Q,
(or the probability that a point x and its neighbor distance
h away will both be in the background)

Q, = Prob {x e D" N D", } (14)

where D is the area covered by disks and D is the com-
plement of this area—i.e., the area of background not ob-
scured by the disks—and D, is the unobscured back-
ground shifted by —A. If these are known, the covariance
function for points at distance 4 in D is

Cov (k) = 0, — Q1. (15)

When the centers of the disks are distributed as a Pois-
son function, it follows that the expectations for these

quantities are respectively [12]
Q =e™ (16)

and

Il

2 NK(h) _ 2 NAT(s)
1€ =Qje

105} (17)

where a disk has area A and diameter D, and \ is the
density of disk centers in counts per square areal unit.
K(h) is the set of overlap function (area of overlap) be-
tween individual disks as a function of the distance & be-
tween them, which may be expressed in terms of the scale-
free function T'(s) as K(h) = AT(s), where s is the nor-
malized distance £ /D. For the disk shape

6 — sin @

T(s) = (18)

where cos (6/2) = s.
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Fig. 3. Discrete-object scene of overlapping disks placed randomly on a
background. Cover is 50 percent.

From these expectations, the covariance function for the
background of the disk model can be determined:

Cov (h) = Qi(™™ — 1)
= Qi(eM —1).

(19)

The variogram is equally well-defined and has the form

y(h) = QI[1/Q) — MT¢] (20)

and is the same for disks and background. The punctual
disk variogram has the following five properties:

1) The global variance, or “‘sill,”’ is Q;(1 — @),
which is the (binomial) variance for the random set func-
tion.

2) The variogram reaches the sill at & = D, the (con-
stant) diameter of the disks.

3) The variogram passes through the origin, i.e., does
not exhibit a nugget effect.

4) The derivative of the variogram at the origin is y' ()
= Me ™. Structurally, this is proportional to the effec-
tive amount of boundary between the disks and the back-
ground and is maximized when the cover is about 63.2
percent. (This point of ‘‘maximal patchiness’’ is different
from the cover at which variance is maximum—i.e., 50
percent.)

5) The variogram is isotropic, which arises because the
overlap function is isotropic.

Properties 2) and 4) also imply that although neither the
mean nor variance of the radiance nor the derivative at the
origin of the variogram for the underlying model is sen-
sitive separately to disk size and spacing, the distance to
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the sill is sensitive, and appears even at this stage as an
important diagnostic statistic.

The linear range (a, ), discussed in a preceding section,
has the form
1
2
a, = DA S (e?T® — 1) ds (21)

1 - Q] 0
and can either be computed numerically or approximated
using the substitution 7(s) = 1 — s in the above integral,
in which case we find that
_q

9 [1 - O
1 -0, AQ

a, = 2D (22)

or

a
o = F(@) (23)
which serves to show a, as a separable function of Q; and
D. For small densities, a, approaches 2D, or twice the
disk diameter. In the practical case, therefore, the linear
range a, has the same diagnostic use as the (exact) dis-
tance to the sill. In the case of actual data and regularized
models, this parameter will assume greater significance.

B. The Regularized Disk Model

It remains to regularize the image of disks by a pixel of
fixed shape. In remote sensing, we typically regard the
pixels in the image as being of square or rectangular
shape. This is largely for the convenience of apportioning
the image space to values associated with a regularly
spaced grid. In truth, the instantaneous field of view of a
detector will be blurred by optical and electronic effects,
even when the detector surface may be rectangular. Thus,
a circular shape for regularization is not inappropriate,
and we will proceed with a scene model of disks of di-
ameter D imaged by a circular pixel of diameter D,.

We will consider first the mean, then the covariance, of
the disk model regularized by a disk. Since the model is
spatially stationary, the expected value of the datum in
each pixel is the same as the expected cover (1 — Q,) at
any point on the plane. This follows since

1
0=+ | Prob (xen}alsl.
That is, the expectation that a point is in the pixel and hits
a disk is the same as the expectation that any single point
hits a disk—and equals 1 — Q,.

Since the disk model and the regularizing set are iso-
tropic, the general covariance formulae of above and our
earlier paper [2, equations (43) and (47)] may be applied.
That is, the variogram for the regularized disk is

(24)

v2(s) = 0% — Covy (s) (25)
where s = h/D and
1

o7 =8 SO tT(t) Cov (Dt) dt (26)
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I+s

Covy (1) = % S t®(t,s) C(Dr)dt. (27)

max(0, -1 +s)

The variance (sill of the variogram) is 0% and the local
variance, or variogram at step size equal to the diameter
of the regularizing disk (2 = D, s = 1), is

72(1)=022“C0Vz(1)~ (28)

The effects due to image regularization on the punctual
variogram are shown in Fig. 4, which presents the result
of regularizing a disk model with a 50-percent cover and
basic disk diameter of one unit with disk-shaped pixels
ranging in size from one to four units. As the image is
regularized by successively larger pixels, the total vari-
ance (or sill) decreases, the range increases (to Dy + D,,
where D, and D, are the diameters of the basic and
regularizing disk), and the derivative at the origin be-
comes zero.

Fig. 5 presents variograms for scenes of varying disk
size as regularized by a disk of unit diameter. The figure
displays the change in the variogram as the scene model
goes from L-resolution (D; << D) to H-resolution (D,
>> D,). As above, the cover for each scene model is 50
percent.

Fig. 6 plots the local variance (value of the variogram
at step equal to the regularizing element size) as a func-
tion of D,/D,. The figure shows a well-developed peak
at a ratio of D, /D, equal to about 0.7. Both the size of
the peak and the precise position depend on the cover
fraction, but for a given cover (1 — @) there will be a
unique ratio D, /D, at which it occurs. Thus the position
of the peak can reveal the size of the underlying disks and
provides a readily computible and practical method in the
L-resolution case.

The tail end of Fig. 6 approaches the regularized over-
all variance Cz asymptotically, which also contains infor-
mation on the scaling properties of the image. This can
be seen in Fig. 7, which plots log (Cz) against log
(D, /D)) and shows the overall effects of regularizing the
variance. The plot falls slowly at first, and then ap-
proaches — 1 asymptotically as would be expected if the
image were purely random. Also plotted is a line with
slope —0.75, which is a slope noted by H. Fairfield Smith
[18] for similar plots involving yields of agricultural
crops. These effects will be discussed further later.

C. The Effect of Subpixel Structure—L-Resolution
Models

The peak of the local variance against block size is di-
agnostic for the size of the disks. However, it occurs for
a regularizing disk with a diameter D, that is slightly
smaller than the size of the underlying disk with diameter
D,. This is then the H-resolution case described above.
For variable-sized distributions of objects, the smallest
objects in the image will behave as for an L-resolution
scene model and induce a behavior in the local and global
variance that may be indistinguishable from that due to a
random point process.
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5 Sill -~

Fig. 4. Regularized variograms for a scene of overlapping disks of unit
diameter covering 50 percent of the background. D: diameter of regu-
larizing disk. D = 0 denotes the unregularized (punctual) variogram.
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Fig. 5. Variograms for disk-model scenes with disk diameters ranging from
0.0625 to 8 units, regularized by a disk of unit radius. Cover is 50 per-
cent for all cases.
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Fig. 6. Local variances (covariance at step size D, ) as a function of D, /D,
for the regularized disk scene.

As noted earlier, the indicator function for a point pro-
cess is a delta function, which does not lead to a definable
covariance. However, if the point process is regularized
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Fig. 7. Log of the regularized covariance of the disk model plotted against
the log of the ratio D,/D,. The reference line has slope —0.75.

by a small disk (diameter D), then the random function
becomes quite well-behaved, being the number of points
within the radius of the disk at each point of the plane.
The resulting process is similar to, but not the same as, a
disk model with disk diameter equal to that of the regu-
larizing disk D,. They have the same backgrounds and
therefore the same set covariances. However, in the
regularized point process the areas where disks overlap
take different ‘‘radiance’’ values from areas of disk where
there is no overlap. The two become more alike, how-
ever, as the regularizing disk size decreases and if both
are further regularized into a ‘‘pixel model’’—such as a
disk of diameter D,.

The variogram for small disk sizes and a given pixel
size is similar in form to that of a large pixel for given
disks—the form depends only on the ratio D, /D,. In both
cases the model is generally indistinguishable from a re-
gularized point process. The variogram at a step of one
pixel is likely to be nearly identical with the sill and they
both decrease monotonically with the area of the regular-
izing pixel.

This effect is most significant when there is a distribu-
tion of disk sizes. Then those disks much smaller than the
pixel will contribute to the variogram in a similar way to
a point process, producing a nugget effect, while the large
disks will contribute like the H-resolution case.

IV. GENERALIZATIONS OF THE Disk MODEL

The simple disk model, with constant size and Poisson
spacing, contains much of the structure needed to relate
variograms of scenes and images in a meaningful way.
However, it is clearly very limited. In this section, we
extend the disk model to accommodate disks of varying
size as well as spacing functions that are alternative to the
Poisson.

A. Derivation of the General Model

To generalize the model, we will return to first princi-
ples and derive a model for punctual scene covariance that
is quite general. Note that for the Poisson spacing model,
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it was possible to neglect the extent of the scene in which
the model occurred and thus ignore edge effects. How-
ever, our more general model will need to include consid-
erations of this problem, and thus it must be posed as fol-
lows.

Using the same assumptions as Garwood [19], let A be
a particular realization of a collection of random discrete
objects with area A in the plane, and S be the scene with
area S in which the objects are located within a larger field
S'. Each object has a particular point that acts as its ‘‘or-
igin,”” and the general model sees objects A scattered ran-
domly in § with origins located according to some point
process in a subset of S so that the objects fall totally in
S (Fig. 8).

For now, consider that only one object from the collec-
tion is located with an origin in S. Then, over many real-
izations of A we will find

Prob {xeA‘} =E{S_A} =S—A

S S = q
(29)
Prob {x e A° N A%,} = E{w}
S —2A +K(h
= ——S—() =q (30)

where K(h) is the overlap function between a realization
of A and itself and K is the average of K over the real-
izations. For disk models, for example, if the probability
distribution function for the disk diameter is p (D), this
means that

®©

a =§ SO D*p(D) dr (31)

and

K(h) = SO K(D, h) p(D) dr. (32)

Now consider N objects independently realized in S. In
this case, Q = ¢", and if the probability of N is specified
as p(N), then

Q=G(q) = X p(N)q" (33)

which can be regarded as the generating function G(u)
for the point process. For the Poisson distribution, this
generating function becomes
oo _)\S u
e AS
G(u) = 2 e TOAS) u
N=0 u!

— e}xS(u—l) (34)

where N is a density parameter in counts per unit area,
and AS is thus the mean number of objects with S. From
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Fig. 8. Diagram of space S’ showing § and A within it.

the earlier definitions in this section

S(gy—1)=—-A
S(g, — 1) = —2A + K(h) (35)
and thqs
0 =e™ (36)
0, = e-mz-m» (37)

from which Cov (k) (= Q, — Q1) is easily derived. This
result is identical with the previous simple model when
the objects are disks of constant size and similar deriva-
tions could be used with other common point processes
such as geometric, binomial, or negative binomial.

B. Clustered Models

To obtain effects due to clustered models, consider the
Neyman Type A point process model as an example. This
distribution has the generating function

G(u) = e+ EW) (38)

where

E(u) = et~ /€ (39)

and C is the mean area of the clusters. However, the co-
variance does not result immediately from substituting g,
and ¢, above into G (u) since the clusters and the individ-
uals making them up are not independently defined. To
derive formulae for the overlap function for clustered
models, we need to consider how the clustering process
is being defined. For example, a Neyman Type A distri-
bution will occur if the following two-stage model is used:

The centers of a ‘“parent’’ process are Poisson
distributed with density u in S. Associated with
each parent is an area bounded by a disk with
area A,. Within each disk the centers of the ob-
jects, with a mean area A,, are distributed with
Poisson density m.

Now the problem can be approached with the clusters
as the new set of objects and the complete result con-
structed as above.

With some manipulation, it follows that

A=A(l~-q) (40)
where ¢; = ¢ and
K(h) = K.(h) [1 — 2, + qie™ ] (41)

where K, is the overlap function for the areas associated
with the parent process and K is the overlap function for
the objects within these areas. Hence, for this construc-
tion of a clustered model

0, = e HA(1—q1)

Cov (h) = Q3(e" ™ — 1). (42)

It is clear that such a model will exhibit two scales of
pattern relative to the sizes of the objects (e.g., ‘‘trees’’)
and clusters (e.g., ‘‘patches’’) in a way that can be dem-
onstrated both from the underlying covariance and from
the effects of regularization.

In the more general case than the Neyman, the objects
associated with each cluster could be located a distance r
away from its center according to some probability law
P(r), or other distributions could be used for the parent
process. Some of these are listed in Thompson [20].

C. Effects of Generalization on Variogram Statistics

The model generalization introduces some significant
effects into the variograms and local variance statistics and
provides a guide to the kind of parameters that may be
accessible by model inversion. As well, generalization
provides a basis for the observed statistics of real images.
First, a reasonable method for the disk diameters is the
lognormal model

where the log mean (u) and the log variance (d%) are
related to }he mean and Varia121ce of the disk diameters as
D =e*"% /2 and 53 = ¢* % In this case it follows that

— T —
A=Z[D2+s§)] (44)
and K (h) needs to be computed numerically.

It is clear in this case that a lognormal disk model and
a fixed size model with an effective disk diameter of

D = D(1 + cv¥)'"? (45)

where CV is the coefficient of variation of the distribution,
will have the same density ( N\) if they have the same cover
fraction. This follows since

1-Q =™ (46)
in each case.
Fig. 9 shows the effect of variable disk sizes by plotting

a series of punctual variograms corresponding to the in-
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Fig. 9. Punctual variograms for disk models with lognormally distributed
disk radii.
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Fig. 10. Variograms for disk models with lognormally distributed disk ra-
dii as regularized by a disk of unit radius. CV: Coefficient of variation.

creasing coefficient of variation but with the mean radius
chosen such that all variograms correspond to disk models
with the same cover fraction and the same effective fixed
disk radius. Fig. 10 shows the same result but with regular-
ization by a disk of unit diameter, and Fig. 11 shows the
effect on the local variance of the increasing coefficient of
variation. It is clear that for a coefficient of variation
greater than one, the effects of the diameter distribution
are significant in both the regularized variogram and the
variance/block size diagram. The difference is enough to
suggest that the inversion of mean size, spacing, and CV
from image models is well posed if the complete vario-
gram function is used. For high CV, the influence of the
large disks shows in the extended sill and peak of the local
variance, and the small disks combine to produce a nugget
effect in the regularized variogram. However, it should
be noted that a CV near 0.5 would be typical of most open
forest stands.

To investigate the effects of clustering, we computed
variograms for a model where ‘‘tree crowns’’ (i.e., disks)
of 1 m diameter were clustered with cluster diameters of
9 m such that the overail cover was 50 percent and the
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Fig. 11. Local variance as a function of block size for models of disks
with lognormally distributed radii.
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Fig. 12. Punctual and regularized variograms for disks of clustered spac-
ing. Diameter of regularizing disk = 1.

.075+

025

o T T T T T
0] 2 4 6 8 10
D2

T T T T

12 14 16 18 20

Fig. 13. Local variance plotted against block size for the Neyman Type A
clustered model.

within cluster cover was 60 percent. The resulting punc-
tual and regularized variograms are plotted in Fig. 12.
Note that even though there are two scales of pattern in
the scene model, that fact is not obvious in Fig. 12.

Fig. 13 is a plot of local variance against regularization
in which two obvious peaks corresponding to the two
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scales of pattern are clearly visible. These effects are
masked in the variograms, but appear visibly in the local
variance plot. This suggests that the variogram should al-
ways be evaluated in the light of a preliminary analysis
of the effects of blocking, or increased regularization, on
both the local and overall image variance.

V. AN APPLICATION TO PLoOT SiZE AND COVER
ESTIMATION

The general relationship between cover fraction, image
variance, and regularization can be illustrated by the fol-
lowing application of the methods derived in this paper.
This example shows how the plot size for field vegetation
sampling may be determined from the expected spatial
covariance for random disks.

The transition from an H-resolution model, in which
the tree crowns are either visible or near resolvable di-
rectly, to the L-resolution model, in which the crowns are
subpixel effects, represents a loss of information for the
image as a whole but a gain at the pixel level. For ex-
ample, in field data collection, cover and canopy structure
is estimated over a plot which is a kind of field ‘‘pixel.”’
It is usually assumed that the estimate is at least locally
stable in the sense that taking another plot nearby would
not give dramatically different results. Again, much clas-
sificatory work on images consists of estimating the cover
or condition at a single pixel level. It is clear that such an
estimate will improve as the pixel size increases up to a
point at which different covers are being integrated into
the pixel.

Consider a simple example, in which the crowns are all
8 m in diameter with Poisson density. As described above,
the radiance of a pixel will be proportional to the fraction
of crown P or

A(‘

P==:¢

1 (47)

and has an expectation 1 — @, the cover.

If we wish the estimate P in a plot to be stable in the
sense that the cover of an adjacent plot will fall into the
same cover class, then this translates into the formulae of
this paper as saying that the local variance should be small
enough that the adjacent pixel or plot will be of the same
type. For field data collection, this stability is important,
although total variance (but not local variance) can be kept
by taking data at a number of sites. In image analysis,
cover or class estimates will *‘spot’’ from pixel to pixel
if the pixel is too small for the spatial variation.

To define some criteria, we can use standard cover
classes for forested areas of the form:

Cover Type Percent
Forest 80-100
Open Forest 50-80
Woodland 20-50
Open Woodland  0-20

TABLE Ii
EXPECTED RANGE (£2 STANDARD DEVIATIONS) IN ADJACENT PLOT COVER
(PERCENT)
Cover Type and Percentage
Pixel Size Forest Open Forest Woodland Open Woodland
(80-100) (50-80) (20-50) (0-20)

10 m 65-100 17-100 0-85 0-44

20m 75-100 37-93 3-67 0-34

30 m 80-100 45-85 13-57 0-24

50 m 84-96 53-77 21-49 1-19

80 m 86-94 57-713 26-44 4-16

480 m 89.3-90.7 63.6-66.4 33.6-36.4 9-11

800 m 89.7-90.3 64.3-65.7 34.2-35.8 9.5-10.5

1.1 km 89.8-90.2 64.5-65.5 34.4-35.6 9.6-10.4

and see to what degree adjacent plots (or pixels), repre-
sented by a mid-range value, will be allocated to the same
class as a function of plot size. To give the plot sizes,
some context for remote sensing the sizes will match the
resolutions of the main satellite sensors:

Sensor Resolution
NOAA AVHRR 1.1 Km
NIMBUS CZCS 800 m
HCMM 480 m
Landsat MSS 80 m
MOS-1 50 m
Landsat TM 30 m
SPOT (MSS) 20 m
SPOT (Panchromatic) 10 m.

Table II shows the limits based on two standard devia-
tions (5 percent level) about the mid-range value in each
class. It is clear for this simple model that it is only at a
plot size of 50 m that if one plot has the mid-range value
of a class, its neighbor has a 90 percent chance of being
in the same class. In patchy open forests and woodlands,
therefore, plot sizes up to a 100 m diameter may be
needed. Clearly, if also the pixels fall into consistent cover
classes, the sensors with pixel sizes in the HCMM/CZCS/
AVHRR range provide very stable cover estimates—but
almost no subpixel texture information.

These results show how the covariance at the finest scale
can be used to investigate plot size, but if there is clus-
tering of the form modeled above, there a further inves-
tigation is needed of the spacing of the plots to adequately
sample the pattern.

VI. DiscussioN
A. The Essential Properties of Disk Models

In remote sensing, the data are scene radiance inte-
grated over finite areas (pixels), sampled at the pixel spac-
ing and collected into a complete image. From our pre-
vious work it follows that for objects with radiance 1 on
a background of radiance 0, the expectation of the pixel
radiance is just 1 — @, the cover fraction,

l—Q =1-e™
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This formula is especially significant in its implications
for remote sensing of land cover structure, since the den-
sity and size of disks are not separable from mean radi-
ance—which reflects only the total object area per unit
area M . For example, if the disks are identified with the
vertical projection of trees or shrubs, then this result sug-
gests that pixel radiance is insensitive to whether it is
being generated by a few large plants or many small ones,
provided that in each case the cover is the same. How-
ever, this is not the case for the second moment, for which
pixel size interacts with the size of the disks. Li and Strah-
ler [21], [22] have used this fact in their inversion of con-
ifer forest models and it may represent the most immedi-
ately significant opportunity to be had from covariance or
variogram analysis in remote sensing.

For models with a restricted number of parameters (such
as mean tree height and spacing, with the height/diameter
ratio and the coefficient of variation of a lognormal height
distribution fixed), Li and Strahler used the radiance data
to estimate tha radiances of the components, and therefore
Q,. They then estimated the sizes of the objects by the
relation between the sill (total variance), the degree of
regularization, znd the object size. It is clear that the
structure of the complete variogram described here pro-
vides an avenue for further development of their methods,
especially when multicomponent systems with shadowing
are being considered [23].

Previous work [10], [11] has indicated that the vario-
grams are not very sensitive to the shapes of the pixels
and objects, provided that they are not anisotropic. The
results presented here also show (using the lognormal
model) that if the variance of size is not too high, it is
again a marginal effect in the data. Overall then, the dom-
inating effects are the average size and spacing of the ob-
jects, which show themselves in the relationship between
the mean radiance and variance of radiance. It is quite
likely, for example, that in the L-resolution case these are
the only parameters available from the second-order spa-
tial statistics.

When the pixels provide an H-resolution model for at
least some of the scene features (clusters of smaller ob-
jects, for example), the graph of local variances against
pixel size can provide a sensitive diagnostic to the scales
of pattern in the image. It seems that this graph is one of
the best tools for the initial investigation of spatial pattern
and variance. The eventual rate at which this statistic de-
creases for large blocking is also an indicator of whether
the scene is large enough to encompass the basic variation
being imaged or whether it is part of a larger pattern.

B. Scaling Properties of the Models

The scaling effects for the disk models in the global
sense can be investigated using the plot of log C; against
log D, /D, as in a previous section. Fig. 14 contains the
results for a fixed size disk, for lognormally distributed
sizes with a coefficient of variation of 1.0, and for the
clustered model. Also plotted are a line with slope —1.0
and one with slope —0.75. These lines represent asymp-
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Fig. 14. Plot of the log of regularized covariance (Cyz) with D, /D, ratio
for clustered, lognormal, and fixed-size disk models.

totes for essentially random data and the ‘‘fractal’” be-
havior noted by H. Fairfield Smith [18]. From the plots,
it is clear that all of the models eventually behave as ran-
dom data with the clustered model retaining significant
nonrandom behavior for the greatest range. This plot,
then, gives us a clue to the scaling behavior found in most
real scenes [10], [11], [13] in which there exists a hier-
archy of scales of pattern that any effective land surface
model must address. For example, leaves cluster into
crowns of trees, trees into patches, patches into forests or
woodlands, and so on. The behavior this induces is some-
times called ‘‘fractal,”’ and the methods outlined in this
paper provide a means for studying some of the sources
of fractal behavior over a range of scales.

VII. CONCLUSION

The methods of spatial analysis outlined here are suf-
ficient to provide significant definition of the structure of
simple scene models. This is shown by our analysis of the
disk models, including effects of regularization, cluster-
ing, and varying size distribution. Despite their simplified
nature, the disk models demonstrate most of the features
and analytical methods that are now being used to model
the cover and structure in images of complex, shadowed
three-dimensional scenes. The clustered model already
includes many of the tools needed to model tree crowns
as clusters of leaves, or patches of forest as clusters of
trees, and the overlap function methods have been used
to describe the bidirectional reflectance distribution func-
tion [22] and hotspot [23] effects that the combination of
canopy structure, view angle, and sun angle induce in a
landscape. Thus, the methods should be immediately gen-
eralizable to real scenes in real remote sensing situations
(101, [11].

There remains for future work 1) the modeling of spa-
tial variance properties of more complex scenes, made up
of three-dimensional objects and their shadows, and 2)
the further development of inversion methods that directly
reveal the characteristics of the underlying population of
discrete objects, especially in the L-resolution case.
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